STRUCTURE OF EQUILIBRIUM PSEUDOTURBULENCE IN GASEOUS
SUSPENSIONS IN CONDITIONS OF LOCAL NONHOMOGENEITY

Yu. A. Buevich and V, G. Markov

In streams of dispersed systems there are intense pulsations of the particles and of the fluid phase.
Such pulsative motion {termed hereafter "pseudoturbulence") usually has a definitive influence on the
formation of the rheological properties of the dispersed systems and on the intensity of the transport
processes taking place therein,

The mechanism of the occurrence of pseudoturbulent motions, associated with the work of the
external field forces, and of the viscous phase interaction forces on the fluctuations of the dispersed
system concentration, is discussed in detail, for example, in [1] for the example of a fluidized bed,
Phenomenologically, the presence of pseudoturhulence is expressed in deviation of the true instantaneous
local values of the velocities of the fluid and the particles, of the bulk concentration of the system, and of
the pressure from the corresponding mean values v,w, p, and p (termed hereafter the "dynamic variables").
The hydrodynamic model of an arbitrary dispersed system was proposed in [2], In the following the
results of [2] are applied to the study of steady pseudoturbulence in an infinite stream of a gaseous sus-
pension, provided the gradients of all the dynamic variables other than the pressure p are negligibly
small. Weterm such pseudoturbulence "equilibrium," In this study we examine only the "nonhomogeneous"
regime, when there is aggregation of the particles in the system. Specifically, the mean square velocities
of the phase pulsations in this regime, the effective diffusion coefficients in different directions, and other
pseudoturbulence characteristics are calculated. The dimensions of the nonhomogeneities which develop
are estimated and a criterion for onset of the nonhomogeneous pseudoturbulence regime is obtained,

1, Spectral Measures and Densities. We examine in the following the deviationsv', w', o', p' as
random functions of the coordinates and time. Any such deviation can be represented in the form of the
Fourier — Stieltjes stochastic integral, for example,

’ . ik
o' (t,x) = { ot gy

where de is the spectral measure of the random process p' (t, r). The properties of the spectral measures
and the rules for calculating the various correlation functions of the random processes in question are
described, for example, in [3]. The equations for the spectral measures dZy, dZy,, dZp, de were obtained
and solved in [2]. Their solution for the case of a gaseous suspension, when gravity, momentum, and the
viscous stresses in the gas can be neglected have the form

dZp = — [imuiﬁi;?ipﬁK]k‘% [139 +< 119 + d?pK>Uk]dZ"
AR TR S
12 = sgrpr | T+ e + ) k| -z

B= =", w=Tb, u=v—w

Here d; and d, are the densities of the gas and the particle material, ¢ is the particle radius, g is
the gas viscosity, and K = K(p) [K(0) = 1] is a function indicating the factor by which the viscous force

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol, 10, No, 5,
pp. 49-61, September-October, 1969, Original article submitted April 8, 1969,

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

731



acting from the carrying gas stream on the particle in the concentrated gaseous suspension, in which the
relative position of the particles is constant, increases in comparison with the Stokes force acting on an
isolated particle.

Relations (1.1) make it possible to express the spectral densities ‘P¢,¢(w, k) of the arbitrary random
processes ¢'(t, ¥) and ¥’ (t, r) in the form of functions of the dynamic variables and the spectral density
¥p,pw, k) of the random process p'(t, r). We have the representations
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Here the x4 coordinate axis is taken in the direction of the interphase slip vector u.
The following expression for the spectral density ¥, p (w, k) was obtained in [2]

A ®,,, k) trD  Dy42D, (1.3)

Teolo ) =— sy B= wn =—um A =kDk = Dyy® + Dy (ko® - k%)

Here D is the particle pseudoturbulent diffusivity tensor with the eigenvalues Dy, Dy, D3 = Dy, and
®p,p(k) is the spectral density of the quantity p', examined at a fixed moment of time, i.e., as a random
function of the coordinates only.

If the particles were points, i.e., if their positions could be defined to within the é~functions, then
®p,p(k) = const would follow from the equivalence of the particles and the statistical homogeneity of the
space (see, for example, {4]). In reality the positions of the centers of the particles are defined to within
some volume of, Accounting for this circumstance with the aid of the procedure for smoothing the
shortwave region of the concentration fluctuation spectrum, proposed by Massignon [5], made it possible
to obtain in [6] the expression

- 36p o\ sin kbf — chf cos kbf Go = 4/sma’
eoo () = gz 0 (1 — 5 ) =y (N (1.4)

Ed

where p, is the concentration of the gaseous suspension in the dense packing state. It was assumed in [6]
that the volume of is simply equal to the mean particle specific volume ¢ = crop . Thereby no account
was taken for the effects of screening the displacements of some particle in its specific volume by the
neighboring particles, which led to the necessity to account for this screening separately, for example, in
calculating the effective diffusion coefficients of particles in concentrated systems. Here we shall use as
the measure of the volume oy the free volume ¢y~ o, where ox* = a'op*'i, as is usually done in statistical
physics of fluids. Then we have

by=ap ™ (1 —p ] p)t=0b(1—p/p"

The function ® o, p(k) in the form (1.4) is somewhat inconvenient for the subsequent calculations.
Therefore we replace it approximately by a step-function such that the integral of ®p ,(k) over wave space
remains as before; we obtain after calculations

o B B de o [ B0 N PN L 1.5
Dy (k) = 4:1 =l (1———§> (ko — k) - Ivo—k‘”w(v?f > (1— P*> a (1.5)

Here Y(x) is the Heaviside function. We note that ®p p(k) in the form (1.5) can also be obtained
directly if we use in place of the Massignon method the well known Debye method, which is essentially the
Massignon method applied in wave space rather than in real space (see, for example, [1]). We also note
that to within a constant, the cofactors of (1.4) and (1.5) are Fourier transforms of one another,
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If the particles cannot be considered statistically independent and in the gas suspension flow there
are correlated motions of entire particle groups ("packets"), the formula (1.5) for ®p,p (k) can as before
be considered valid, but kg < k. In this case the decrease of k reflects simply the reduction of the number
of degrees of freedom of the system of particles with the appearance of the correlations between the
particles and the corresponding decrease of the number of harmonics in the Fourier representation of the
gaseous suspension concentration fluctuations. The equation for finding kg is examined later.

Integrating the spectral densities (1.2) with respect to the frequency w and using (1.3), we obtain the
expressions for the partial spectral densities

b= G [ o) e M)
D yt,55 (K) = “\fi;)(k) 4 H)O e / 1 ctutk,? 1?&“ )i,;f—
@, (k) = —(D;{i::)—[c il . (¢ — 1)571] (1.8)
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The relations (1.6) contain the quantity B, which in accordance with (1.3) depends on the unknowns
<w'? >, Dy, Dy. For the sequel it is necessary to find explicit representations for these unknowns in
terms of the dynamic variables.

2., Characteristics of Equilibrium Pseudoturbulence. We use the formula for finding Dy, D,

Diz § de ({6 Wi (0, K dodk = § Ryjpu; (6,0)de . Rusrwi(8) = ' (1) w3’ (¢ 7,0+ 5)) @.1)
0 0

(summation over j is not performed here). Using the relations (1.2), (1.3), (1.5) for the integration in (2,1)
and changing the order of integration with respect to w and T, we obtain the equations

_ 2mcu® [} 1 o
Dy = (I—pPk’ Di—D; \3 ' +r2arctg—-), Q=7 92(1——5-)
D, = wetu? (61 5 1 2 £ 1 3 Ds (2,2)
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From (2.2) we have the universal transcendental equation for r
o = r? _ A3 —3r (1 4 ) arc tg (1/r) _ D. (2.3)

T+ 1—3r - 2r8arc tg (1/r) C T

It is not difficult to show that (2.3) has the single positive root r ~ 0.855; the corresponding value of
@ ~ 0,4221, Thus the ratio of the particle pseudoturbulent diffusion coefficients in the longitudinal (along
u) and transverse directions is a universal constant, which is independent of both the dynamic variables
and the physical parameters of the phases.

Solving (2.2) we have

2eu
(1 —p) ko

Or, substituting herein r and «, we finally obtain

D, = [n(D (142 <_. — r?+ r3arc by —):l% , Dy =0,422D,

0.859cu

D]_ = ko

‘l/z
_ e - 2.4
e - (1 p*) ,  Dy=0.422D, (2.4)

Similarly to (2.1), we have the equation for

(67 S (Dp,p k) Ao - g‘-’u?klz(1 -+ Bwg) (205)

<w,2>:(1-——p)2 B A+ wg(l+ Boo) dk
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TABLE 1. Dependence of 2, A, Xj (j=1, 2, 4, 6, 8) on p*

3 Q A 10° X, 10° X, 108 Xy 10% X, Xs
0.05 0.2329 1.5968 0.2917 0.1059 0.1694 0.4782 99.243
0.10 0.2513 1.6596 1.229 0.4444 0.6880 1.9037 45.690
0.15 0.2724 1.7293 2.9041 1.0464 1.5684 4.2332 28.606
0.20 0,2958 1.8073 5.3930 1.9392 2.8153 7.3710 19.290
0.25 0.3229 1.8956 8.7397 3.1357 4.4155 11.144 14,167
0.30 0.3542 1.9964 12.906 | -4.6243 6.3202 15.273 10.850
0.35 0.3906 2.1129 17.697 6.3360 8.4105 19.326 8.5771
0.40 0.4333 2.2497 22.613 8.0901 10.435 22.647 6.9337
0.45 0.4834 2.4142 26.577 9.4938 11.898 24.255 5.8890
0.50 0.5426 2.6184 27,439 9.7592 11.782 22.638 5.257R
0.55 0.6118 2.8830 21.085 7.4179 8.7336 15.736 5.3949

*For p = 0 we have @ = 0,2165, A = 1,5403, Xj = 0; for p= 0.6,
Q= 0.6912, A = 3,2481, X] =0,

We obtain the equation for ky {for kg < k) by equating the dissipation £4 of pseudoturbulence energy
by small-scale isotropic "vibrations" of the particles within the limits of their specific volumes to the
viscous (Brownian) dissipation €; of the energy of these vibrations by viscous forces, The same equation
was used in [6] for somewhat different purposes. It is actually assumed that the dissipation of pseudotur-
bulent energy into heat is accomplished through the mentioned small-scale vibrations; a detailed discussion
of this condition in connection with experimental data is presented in [7].

We use for €5 the usual expression, which follows from Brownian motion theory
& = 3pd, KD,
where Dy is the coefficient of diffusion owing to the considered vibrations,

We represent the quantity €; is the form which is usual in hydrodynamics of a viscous fluid with the
effective viscosity iy = pdyDyy. This may be done, strictly speaking, only if the pseudoturbulence linear
scale is much longer than the average distance between the particles in the system, i.e., kj < ke, This is
usually the case for gaseous suspension flows. We then obtain similarly [7] the equation

e Wy Awg - 2k (1 + Boy) 2.6)
WK = g (0. (0 ST

Equation (2.6) differs from the same equation in [7] by the absence in the right side of the term
owing to "compressibility" of the dispersed phase (by the nonzero divergence w" resulting from possible
changes of the gaseous suspension concentration in the flow, This refinement is introduced because such
"compressibility" is not accompanied by energy dissipation.

We introduce the dimensionless parameters

. Didg _ Dik 2.7

From (2.,4) for D; we can write Z in the form

Zﬁ:i_(

> (1___>, v =1.3563

1—p P

Equations (2,5) and (2.6) are then written in the form

11
1+2d Q[P Lol -+ LA -
:3755 eleta(l—3 -1 +A)Q Ezdgdt

11
QZE 12 fa(l =) (14 A)2
(1—9 §§ aﬂt”-m [ Y L Ry VY o) Eldedt (2.8)

These equations were solved on the BESM computer for different p in the interval from zero to px =
0.6. The resulting relations are shown in Table 1, The values of the parameter Q together with the
expression (2.4) for Dy define the quantity k¢, This kg is meaningful only for kg < ke. If the solution k, of
the system (2.5), (2.6} is larger than the ke from (1.5), we must take kj = Koo
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TABLE 2, Dependence of Xj G=3,5,7) onpandn*

P

n=1.0 ‘ 1.5

2.0 2.5 3.0 3.5 4.0

0.05 0.2964 0.4065 0.5080 0.5944 0.6667 0.7275 0.7789
0.0401 | —0.0103 .1 —0.0433 | —0.0678 | —0.0853 | —0.0993 | —0.1109
—0.4020 | —0.6433 | —0.8041 | —0.9190 | —1.0051 | —1.0721 | —1.1257

0.10 1.2033 1.6401 2.0606 2.4106 2.7036 2.9497 3.1580
0.1713 | —0.0397 | —0,1807 | —0.2815 | —0.3570 | —0.4158 | —(.4628
—1.5432 | —2.4691 | —3.036%4 | —3.5273 | —3.85%0 | —4.1152 | —4.3210

0.15 2.7411 3.7532 4.6875 5.4819 6.1473 6.7059 7.1788
0.4140 | —0.0840 | —0.4160 | —0.6532 | —0.8341 | —0.9694 | —1,0%01
—3.3088 | —5.2941 | —6.6176 { —7.5630 | —8.2721 | —8.8235 | —9.2647

0.20 4.9143 6.7203 8.3370 9.8042 10.991 11.983 12.831
0.7862 | —0.1352 | —0.7494 | —1.1882 | _1.5173 | —1.7732 | —1,9779
—5.5556 | —8.8889 | —10.111 | —12.693 | —13.889 | —14.815 | —15.556

0.25. 7.6969 10.506 13.093 15.303 17.149 18.699 20.012
1.3105 | —0.1754 | —1.1659 | —1.8735 | —2,4041 | —2.8169 | —3.1471
—3.1019 | —12.963 | —16.204 | —18.519 | —20.255 | —21.605 | —22.635

0.30 10.997 14.977 18.650 21.774 24.390 26.537 28.446
1.9965 | —0.1854 | —1.6400 | —2.6791 | 3.4533 | —4,0644 | —4,5493
—10.714 | —17.443 | —21.429 | —24.490 | —26,786 | —28.571 | —30.000

0.35 14.604 19.839 24.672 28.781 32.222 35.112 37.558%
2.8303 | —0,1430 | —2.1252 | —3.5410 | _4.6029 | —5.4288 | —6.0896
—13.088 | —20.940 | —26.175 | —29.915 | —32.719 | —34,900 | —36.645

0.40 18,083 24.502 30.428 35.467 39.638 43.231 46.221
3.7400 0.0344 | —2.5508 | —4.3482 | _5.6962 | —6,7447 | 17,5834
—14.815 | —23.704 | —29.630 | —33.862 | 37,037 | —39.506 | —41.481

0.45 20.584 27.837 34.531 40,223 44,990 48,994 52.382
4.5261 0.1161 | —2.8240 | —4.9240 | .—6.4991 | —7.7241 | —8.7041
—15.341 | —24.545 | —30.632 | —35.065 | —38.352 | —40.909 | —42,995

0.50 20.532 27.754 | 34.421 ] 40.000 | 44.838 | 48.824 | 52.199
4.7513 0.2137 | —2.8013 | —4.9721 | —6.5993 | —7.8531 | —8.8614
—13.839 | —22.222 | —27.778 | —31.746 | 34,722 | —37.037 | —35.889

0.55 15.145 20,539 25.519 29.753 33.299 36.277 38.797
3.6014 0.1046 | —2.2265 | —3.8917 [ —5.1405 | —6,1119 | —6.8839
—9.3364 | —14.938 | —18.673 | —21.340 | —23.341 | —24.897 | —26.142

*The first numbers in the table groups give 10° X3, the second
are 10° X;, and the third are 10° X;.

In the following we examine only the "nonhomogeneous" flow regimes of a gaseous suspension, when
in the flows there are formed "packets"of particles moving together, cavities containing pure gas, and so
on [8], where in view of the existence of correlations between the behavior of neighboring particles kj < koo,
Analysis of homogeneous flows, in which the particles can be considered statistically independent and
ko = ko differs essentially from that presented here, requires separate examination. In this case we have
the first equation of the system (2.8) and the relation kg = ke in place of the second equation,

Using the expressions for the spectral densities from section 1, we have
uip’> =<w'p’> =<Kp’'p’> = W'y = (wiwy'y = (v wy'y = (wy'wy’>
=<p1'> =<{pw’> =0
The nonzero averages are written in the form

2 3702°
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R 1 3422 o 1 2 o1 el \?
Xo = - =122 5 WXO'E‘T‘T_T"F( : )]
o g2 (b o . 0ZE(L 4 2
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37Qz2 o —1
Xy = oz s+ (L= @) Jal + (L4 8) (7, — S22 7))
3vQZ2 , fun’ ‘wy’
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Fig, 1 The concrete calculations of the parameters (2,9) were also made
on a computer, and it was always assumed that p* = 0.6, The dependence
‘ of the quantities X5 GG=1, 2, 4, 6, 8) on p are presented in Table 1, The —
1~y et ‘ quantities X;(j = 3, 5, 7) depend on the form of the function K(p), Experi-
0.2 — ! mental data on this function are presented in [9]; however there is no
15 L sufficiently convenient empirical formula for K(p), suitable over the
- entire interval of variation of p for different values of the Reynolds and
il Z Archimedes numbers, in [9]. Here we shall use for simplicity an
///::/ _% approximate formula of the form
T — E@=0—po"", e=1+4n 2.10)
T ID
) 27 06 The parameter n varies from 1-2 for large values of the Reynolds
Fig. 2 and Archimedes numbers to 3-4 for small values of these numbers. For

example, according to [10] n varies from 1,39 to 3.65, according to [11]

it varies from 1,375 to 3.75. However we note that the data of [10, 11]
were obtained for a bed of particles in the fluidized state, i.e., containing pseudoturbulent motions. Never-
theless, according to [9] the values of the parameter n for a bed of motioniess particles are close to the
indicated values. In the following all the calculations are made for values of n from 1 to 4;the dependences
of the parameters X (5 = 3, 5, 7) for these n are shown in Table 2,

We introduce the ratios
ND=<Z72,2> — Xy N, :<w2'2> _ Xs

n'% X5 ' -

w1’y X

It is easy to see that the first ratio depends on p and n, the second depends only on p, and the depen-
dence on p is very weak, so that Ny and Ny can be approximated successfully by constants, For example,
with variation of p from 0,05 fo 0.55 the quantity Ny, varies monotonically from 0.3630 to 0,3518, and Ny
for n = 2 and n = 4 varies from0.3335to 0,3423 and from 0.2175 to 0,2251, respectively., We note that Ny
decreases significantly with increase of n,

The total gas flux Q relative to the stationary dispersed phase equals the sum of the "regular" and
"irregular" pseudoturbulent fluxes

Q=0—pug=00—pu—X0">={1—p) ot ¢ =1— (L —p)tcX, (2.11)

The quantity ¢ shows how many times the total flux Q exceeds the regular flux (1 — p)u; its depen-
dence on p for different n is shown in Fig, 1, In view of the negativity of Xy in Table 2, the pseudoturbulent
flux is positive and for sufficiently large n can amount to 30~40% of the regular flux. Relation (21) makes
it possible to express all the psevdoturbulence characteristics from (2,9) in terms of the observable quan-
tity — the total relative gas flux Q.

The quantity [2]
Pp=1— (V'WH? (X5 -4 2X)

B T T (X1 2Xq) (Xs 4 2Xq)

is of interest for the pseudoturbulent energy transport equation under nonequilibrium conditions.

The dependence of ¥ on p and n is illustrated in Fig, 2. The difference of ¥ from one is significant
only for small n, and for all n the quantity ¥ can be approximated by a linear function of p.

Expressing kg through Xg from (2.9) and using w; and ke from (1.2) and (1.5), we write the condition
of local nonhomogeneity of the gaseous suspension in the form
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_ _BK X RKa 3up \¥sf,  p \h c(1—p)
A | ! yaN ko_ 1—p cu ’ U << ) ) (1 P*> —X—s—' (2,12)

/ J A detailed discussion of this condition is presented below, but we
¢ / / 3 \ J see immediately from (2,12) that any gaseous suspension in sufficiently

rarefied (o ~0) or nearly closely packed (p~ p+ states must be con-

7 N\
/ / Y sidered locally homogeneous, i.e., kj = Keoe
— 7 \
/ // -y \\ Thus all the pseudoturbulent averages are expressed through the
2 < L \ dynamic variables. When necessary the same approach can be used to
/ =11 | obtain the expressions for the various correlation functions as well.
7 4.3 0F
Fie. 3 g Study of Equilibrium Pseudoturbulence and Its Influence on the
18 Average Motion, In gradient-free stationary flow (i.e., under equilibrium
conditions) the dynamic equations from [2] have the form
L S | 1 d 1—p d
/UQ;%Q . : ; —32—7,%+g+BK1u=0, ——cg—p—d?~BpK1u:0
e — K dK | o [, p\ &K 3.1)
—— Kl—7—A+¢(X7—'X6)7?+Tl\1——[:>—%r
< = Here g is the external mass field acceleration vector,
/ \ . i //*i \\‘ g
7 The solution of (3,1) has the form
A
— p _ - _U—pg  xl—pg
P ] d—l‘ “deg, U= — BKI - BK (3-2)
7 0.3 )
Fig. 4 The parameter X shows how many times the viscous resistance of

the motionless granular material exceeds the resistance of a bed of
particles of the same porosity in a state of equilibrium pseudoturbulent
motionfor zero pseudoturbulent flux, Actually, ina motionless bed the gas
velocity u* equals

_ (l—p)g u K

| J— —_— —
ur= BK uy o Ky K

The corresponding ratio of the total relative fluxes is

2 =qu>1 8.3)

u¥

This same quantity ¢x characterizes the ratio of the effective viscous resistances of motionless
and moving beds of the same porosity for the same gas flux Q. Thus the pressure difference required to
provide a given gas flux through a bed of randomly pulsating particles is less than the same difference for
the bed of regularly packed motionless particles, This reduction of the effective resistance of particles
entrained into the pseudoturbulent motion is the result of two factors which act in the same direction:

1) the appearance of the positive pseudoturbulent flux <p'vy' >, which increases the total gas flux
for a fixed pressure gradient, and

2) the appearance of a pegative fluctuational addition to the viscous interphase interaction force.

The first phenomenon is obviously the result of the comparatively easier gas "breakthrough" of the
segments with porosity which is high as a result of the fluctuations,

The second phenomenon is associated with the fact that the gas which breaks through such segments
experiences reduced resistance, and this reduction is not balanced by an increase of the resistance to the
gas flowing through the volumes with lowered porosity. Moreover, the porosity fluctuations cause some
increase of resistance to regular flow because of the nonlinearity of the function K() [last term in the
parentheses in the second line of (3.1)]. It is easy to see that the influence of this last effect examined
previously in [12], is very slight even for high nonlinearity Ifor example, large n in (2.10)],

If the relation (2.10) is satisfied we have the expression for ¥

x={1+n(n+1)[X1’:fs +%(1jp)2<1_ pp‘ﬂ}‘l
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TABLE 3. Dependence of the Quantities < v'2>/Q and < w' > /Q%on
p and n (first and second numerals in the table groups, respectively)

n==1.0 1.5 2.0 2.5 . 3.0 3.5 4.0
0.05 0.0028 0.0051 0.00%4 0.,0126 0.0177 0.0237 0.0306
0.0022 0.0035 0.0050 0.0068 0.0089 0.0112 0.0138
0.10 0.0127 0.0230 0.0374 0.0557 0.0779 0.1038 0.1335
0.0104 0.0161 0.0231 0.0312 0.0404 0.0508 0.0623
0.15 0.0320 0.0578 0.0931 0.1374 0.1905 0.2518 0.3210
0.0272 0.0419 0.0594 0.0797 0.1025 0.1273 0.1355
0.20 0.0641 0.1142 0.13(7 0.2652 0.3633 0.4750 0.5990
0.0564 0.0857 0.1202 0.1593 0.2027 0.2500 0.3008
0.25 0.1126 0.1974 0.3095 0.4453 0.6019 0.7767 0.9672
0.1023 0.1533 0.2i18 0.2770 0.3473 0.4235 0.5034
{.30 0.1817 0.3128 0.4821 0.6829 0.9094 1.1570 1.4217
0.1703 0.2509 0.3413 0.,4396 0.5441 0.6535 0.7666
Q.35 0.2749 0.4645 0.7036 | 0.9808 1.2869 1.6146 1.9581
0.2657 0.3848 0.5150 0.,6532 0.7969 0.9442 1.0936
.40 0.3930 0.6525 0.9729 1.3368 14.7311 2.1453 2.5733
0.3914 0.5579 0.7357 0.9205 1.1089 1.2936 1.4877
0.45 0.5265 0.8634 1.2734 1.7329 2.,2244 2,7352 3.2562
0.5405 0.7619 0.9943 1.2333 1.4734 1.7122 1.9476
0.50 0,6353 1.0428 1.5384 2.0938 2.6383 3.3064 3.9363
0.6743 0.9509 1.2420 1.5403 1.8407 2.1395 2.4343
0.55 0.5939 1.0001 1.5109 2.1011 2.7511 3.4453 44711
0.6541 | 0.9453 | 12626 | 1.5984 | 1.9466 | 2:3027 | 2.6630

Curves of X (dashed) and ¢x (continuous curves) as a function of p for different n are shown in Fig, 3,
Both of these coefficients considered as functions of p have maxima for p = 0.45— 0.50 (% = 0.60). In
particular, it is easy to see from Fig, 3 that for n =3, 50% reductionof the resistance of the system of
fluctuating particles in comparison with the system of motionless particles is possible. The coefficients
¥ and X¢ increase sharply with increase of n. However large values of n are extremely unlikely for
locally nonhomogeneous systems since, as a rule, for such n the system is locally homogeneous and the
presence analysis is not applicable to this system. The resistance reduction effects were examined
previously in [7] qualitatively.

This resistance reduction has been observed repeatedly in fluidized bed experiments and has reached
20-50% (see, for example, the references in [8], and also [13, 14]). In [15] this phenomenon is associated
with slow circulation of the suspended material within the bed; in [13, 14] it is explained by the effect of
nrectification™ of the channels between the particles under conditions of developed fluidization, i.e., in the
final analysis by particle pulsations. The second point of view was questioned in [8] on the basis that
generation of pseudoturbulence requires additional expenditures of energy of the dispersed medium carrying
flow. But in spite of this additional energy consumption, the porosity fluctuation facilitates gas penetration
through the segments with reduced particle content to the degree that the total gas flux is still greater than
in the analogous system without fluctuations,

We can also assume that for the same reasouns the effective resistance of a motionless bed with
ordered packing of the particles will differ from the resistance of a motionless bed having disordered
packing of the same porosity. Some comparative data confirming this conclusion are presented in [14].

Let us examine in more detail the nonhomogeneity condition (2.12), Using (2.11) and (3,2), we write
this condition in the form

_@ _ (l—oPxeXs( 2 \7 P\
F= g >Fo= T\W) <1 h m) ¢4
Here F is the Froude number of the flow., The dependence of the critical Froude number Fy, at
transition through which the locally nonhomogeneous flow regime is replaced by the locally homogeneous
regime, on p for n = 1 is shown in Fig, 4 by the continuous curve, and the corresponding dependence of
the dimensionless length
L 1 ¢

Lo _ . _Q
= W = WU Ly =~ (3.5)
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is shown dashed. It is clear that L (and in some sense L as well) characterizes the spatial scale of the
pseudoturbulent motions and can also be considered as the average dimension of the nonhomogeneities
which arise under equilibrium conditions. We see from Fig, 4 that L/L increases monotonically (and
nearly exponentially) with p, reaches a maximum for p = 0,55, and then falls off sharply to zero. The
critical Froude number Fj decreases with increase of p, reaches a minimum, and then increases rapidly.
For p — 0 and p — p, the Froude number Fy == and L/Ly —~ 0. The curves of L/Lj and F, for other n
behave similarly. The dependence of Fyand L/Lg on n for several p (numerals on curves) is shown in
Fig, 5,

The local homogeneity criterion F < Fj actually coincides with the semi~empirical criterion F < 1,
proposed by Wilhelm and Kwauk [16], who studied fluidization of a bed of particles by various dispersed
flows medium (see also [14]). Formula (3.5) has the same structure as the expression for the maximal
dimension of the stable gas bubble in a fluidized bed, obtained in [8]; however the scale L is several orders
less than the diameter of such a stable bubble. We emphasize that the condition (3,4) and the equation (3,5)
characterize, naturally, the local properties of the system, which are connected with its structure but in
no way characterize the hydrodynamic disturbances which can arise in the flow when stability is disrupted.

Let us examine the monotonic expansion of a fluidized bed of particles with given properties for in-
creasing gas flowrate. Near the initiation of fluidizationthe bed is locally homogeneous. With further
increase of Q two versions are possible: either F < F, throughout the entire region of existence of the bed
and the fluidization is homogeneous for all p, or the curves F(p) and Fy(p) cross for some p = p., where
we see from Fig. 4 that p+ is very close to px, Uponpassagethroughp, thenonhomogeneousregimebegins,
which is then inevitably again replaced by the homogeneous regime for some p = p_, which is not
necessarily near zero., This pattern of regime replacement is in agreement with the experimental facts
[8, 13, 14],

The mean square pseudoturbulent velocities of the phases can be characterized with the aid of the

numbers Ny, Ny, introduced above, and the quantities
S c 2 w'?y c 2
B2 = (o) (G+2X), 2= (ot (X 4 2Xy)

The values of these quantities for different p and n are presented in Table 3. We see that for not too
small p the pseudoturbulent velocities of both phases coincide in order of magnitude with the flux @, which
is in qualitative agreement (as in the dependence of < v'2>and <w' > on p) with numerous experimental
facts (see bibliography in [13, 14]).

The effective pseudoturbulent pressures (normal stresses) Pj of the dispersed phase in the longitu~
dinal and transverse directions with account for the instantaneous nature of particle momentum transfer
in the material is represented in the form [7]

_— P; . o VYL (wi™) (3.6
m=ge=e[l-(Z) T & -6)
The values of IIj are presented in Table 4. It is not difficult to see that the pressures Pj appearing

in the dynamic equations from [2] may have a very marked influence on the motion of the gaseous suspen~
sion under nonequilibrium conditions.
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TABLE 4, Dependence of Pseudoturbulent Pressures of Dispersed
Phase in Longitudinal (II;) and Transverse (I,) Directions on p and
n (first and second numerals in table groups, respectively)

n=1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.05 0.0001 0.0002 0.0003 0.0003 0.0005 0.0006 0.0007
0.0000 0.0004 0.0001 0.0001 0.0002 0.0002 0.6C03

0.10 0.0013 0.0021 0.0030 0.0040 0.0052 0.0066 0.0080
0.0005 0.0008 0.0011 0.0015 0.0019 0.0024 0.0029

0.15 0.0064 0.0099 0.0140 0.0188 0.0242 0.0301 0.0366-
0.0035 0.0053 0.0076 0.0104 0.0130 0.0163 0.0193

0.20 0.0214 0.0325 0.0456 0.0604 0.0769 0.0948 0.1141
0.0077 0.0117 0.0164 0.0217 0.0276 0.0341 0.0410

0.25 0.0588 0.0831 0.1218 0.1593 0.2000 0.2435 0.2895
0.0211 0.0316 0.0437 0.0571 0.0718 0.0873 0.1039

0.30 0.1442 0.2126 0.2892 0.3724 0.4609 0.5536 0.6494
0.0517 0.0762 0.1036 0.1334 0.1652 0.1934 0,2327

0.35 0.3295 0.4772 0.6387 0.8101 0.9883 1.1709 1.3563
0.1180 0.1709 0.2287 0.2900 0.3538 0.4193 0.4856:

0.40 0.7219 1.0289 1.3569 1.6977 2.0452 2.3950 2.7438
0.3331 0.4748 0.6262 0.7834 0.9438 1.1052 1.2662

0.45 1.5515 2.1870 2.8555 3.5402 4.2294 4.9147 5.5905
0.5542 0.7813 1.0201 1.2647 1.5103 1.7557 1.9971

0.50 3.3442 4.7117 6.1541 7.6322 9.1206 10.601 12,062
1.1884 1.6758 2.,1888 2.7145 3.2439 3.7706 4.2901

0.55 7.3874 10.675 14,259 18.051 21.984 26,006 30.074
2.5939 3.7558 5.0163 6.3504 7.7344 9.1488 10.530

The particle diffusion coefficients are characterized by the ratio @ in (2.3), (2.4) and by the quantity

Dy ante (1 e\ py=L (3.7)

Do - a0 —pfXs \  pa)’ T g

The dependence of the dimensionless diffusion coefficient Di/D; in the longitudinal direction on p for
three values of n is illustrated in Fig, 6a by the continuous curves. The expressions for the momentum
and pseudoturbulent energy of the dispersed phase transport coefficients are obtained from the expressions
for the corresponding diffusion coefficients with account for the instantaneous nature of particle momentum
and energy transfer in the material [7]. As a result we have

M M [y (eNFTPDe _wm A opn
Do T d,Dy _—9[1 \ps ) ] Do ' diDo ~ d2Dy ~ daDp (8.8)
The quantity ¢4 /d,Dy is shown dashed in Fig. 6a. As p — px this quantity becomes infinite and
D,/D, approaches some finite value, The latter is associated with use of the assumption of local homo-
geneity, which is inadequate in the region p ~ p*, In reality the ratio D;/D, rapidly decreases to zero
near Px.

In several problems of heat and mass transport in a gaseous suspension the gas diffusion coefficients
may be of interest. We represent them in the form

o0
Dy = S £9% gr QS Tvl,vl (0, K)dodk, Dy = ( gt dt S§ ‘I’w’uz (0, k) do dk

X o
[} 0

After calculations we obtain

Dy’ 1 —1 1 —1\2 1 1 ~ Dy
b_i___:[_g__,.z__g c - +,r_(r2_|_c c_) are tg _r—} [T——rz_;_raarctg _1_] 1 D: =1 (3.9)

Hence we see that Dy'/D; depends on n from (2,10) but is independent of p (Fig. 6b), For n which are
not too close to one, Dy' > Dy, We note that the estimate (3.9) for the gas diffusion coefficients is very
approximate, which is associated primarily with the use therein of Eulerian rather than Lagrangian
correlations for the gas velocity.
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In conclusion we note that the entire analysis developed in section 1 is based on the assumptions that

the force of viscous interaction of the gas with a single particle is linear in the relative velocity and can
be represented in the Stokes form. The second assumption is not at all essential; dropping this assumption
requires only a trivial redefinition of the quantity 8 in (1.1), The first assumption is incorrect for large
Reynolds numbers, when the viscous friction force is quadratic in the velocity., However the calculations

remain valid for this case as well if we use the approximate linear approximations for the true interaction
force for the different relative velocities.
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